Enhanced classification approach with semi-supervised learning for reliability-based system design
نویسنده
چکیده
منابع مشابه
Semi-Supervised Learning Based Prediction of Musculoskeletal Disorder Risk
This study explores a semi-supervised classification approach using random forest as a base classifier to classify the low-back disorders (LBDs) risk associated with the industrial jobs. Semi-supervised classification approach uses unlabeled data together with the small number of labelled data to create a better classifier. The results obtained by the proposed approach are compared with those o...
متن کاملComposite Kernel Optimization in Semi-Supervised Metric
Machine-learning solutions to classification, clustering and matching problems critically depend on the adopted metric, which in the past was selected heuristically. In the last decade, it has been demonstrated that an appropriate metric can be learnt from data, resulting in superior performance as compared with traditional metrics. This has recently stimulated a considerable interest in the to...
متن کاملSemi-Supervised Classification of Non-Functional Requirements: An Empirical Analysis
The early detection and classification of non-functional requirements (NFRs) is not only a hard and time consuming process, but also crucial in the evaluation of architectural alternatives starting from initial design decisions. In this paper, we propose a recommender system based on a semi-supervised learning approach for assisting analysts in the detection and classification of NFRs from text...
متن کاملRedalyc.Semi-Supervised Classification of Non-Functional Requirements: An Empirical Analysis
The early detection and classification of non-functional requirements (NFRs) is not only a hard and time consuming process, but also crucial in the evaluation of architectural alternatives starting from initial design decisions. In this paper, we propose a recommender system based on a semi-supervised learning approach for assisting analysts in the detection and classification of NFRs from text...
متن کاملDetecting Concept Drift in Data Stream Using Semi-Supervised Classification
Data stream is a sequence of data generated from various information sources at a high speed and high volume. Classifying data streams faces the three challenges of unlimited length, online processing, and concept drift. In related research, to meet the challenge of unlimited stream length, commonly the stream is divided into fixed size windows or gradual forgetting is used. Concept drift refer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012